12

4) Type ?Maaaa Acount, where the address is
the starting address of the data to be read from
memory and count is the number of hex bytes
to be recorded.

Operator Manual for the RCA CDS Il CDP18S005

5) Turn the Record Control switch ON and
press CR. After the data has been output,
UT20 will issue another *.

For another system checkout program using the
supplied “Deduce’” game, refer to Appendix H.

Introduction to the
Monitor Software
UT20

Utility Commands

The CDP185005 COSMAC Development System
includes a Monitor program, known as UT20, which
performs commonly required functions of running the
terminal interface, providing a means of reading and
generating reloadable tape, giving . access to all
memory locations, and allows the user to start
program at a given location. The following explains in
detail the 7M and !M commands already mentioned,
plus others not yet discussed.

In general, after the system has been RESET, the
user has two choices: pressing RUN begins execution
of his program at location 0000, while pressing RUN
U begins execution of UT20 (at 8000). After pressing
RUN U, the user next presses either a LF (line feed)
or a CR (carriage return) key, depending upon his
installation. A CR initiates FULL DUPLEX
operation, an LF, HALF DUPLEX. Besides
establishing the need to echo, UT20 uses this input to
calculate the timing parameters necessary to run the
terminal. Thus, a single program can operate with
wide variations in clock speed or terminal speed.

When UT20 is ready to accept a command, it types
out an asterisk (*) as a prompt character.

?M Commands

To interrogate memory, type a command such
as

?M2F5 3(CR)

UT20 responds by printing out the contents of
memory beginning at location 02F5: three bytes are
printed out as two hex digits each. Each line of output
begins with the address, and data is grouped in 2-byte
(4-digit) blocks. When necessary, new lines are begun

every 16 bytes, with the previous lines ending in
semicolons. The user may enter any number of digits
to specify the beginning location (leading zeroes are
implied, if necessary). 1f more than four digits are
entered, only the last four are used. The number of
bytes to be typed out should be in hex. Again, if more
than four digits are entered, only the last four are
used. This feature allows the correction of a mistake
simply by continuing the type and terminating the
typed sequence with the correct 4-digit values (230024
is, effectively, 0024). If the number of bytes to be
typed is not specified, one byte is assumed. For
example:

M2F5(CR)

would result in the typeout of the one byte at location
02F5.

When the user wants to punch a reloadable
paper tape, he requests a memory type-out as
previously described.

IM Commands

In general, data is entered into memory, by
means of a command such as

IM12F 434F534D4143(CR)

This command enters six bytes (two hex digits
each) into memory beginning at location 012F. Once
again, the starting location is determined by the last
four digits entered. Data is entered into memory after
each two hex digits are typed. If the user types an odd
number of digits, the last digit is ignored, and the
error message (‘?°) is typed out. It is therefore only
necessary to re-enter the last byte.

Operating and Programming the CDS

13

The !M command provides two options that
facilitate memory loading. First, a string of data can
be extended from line to line by typing in a comma
just before the normal CR. (In this case press the CR-
LF (carriage return-line feed) keys before beginning a
new line.) For example,

IM23 56789ABC,(CR) (LF)
DEF0123456,(CR} (LF)
3047(CR)

- enters 11 successive bytes beginning at location 0023.
Between successive hex pairs while data is being
entered, any non-hex character except the comma

- {and semicolon, as will be discussed) is ignored. This

arrangement permits arbitrary LF’s, spaces (for

readability), nulls (generated by the utility program
or by a time-share system to give the carriage time to
return), etc.

As a second optional form of data entry, a
string of input data can be terminated by a semicolon
{and a CR). The utility program then expects more
data to follow on the next line, but preceded by a new
beginning address. The line must have the format of
an !M command, but with the !M omitted. This
option provides the mechanism for reading in a paper
tape previously punched out as a result of the ?M
command. (Recall the format of multiline ?M out-
puts discussed above.)

The utility program ignores all non-hex
characters following ! M, allowing CR, LF, and nulls
to be inserted in the tape without disturbing the !M
command. The semicolon feature allows non-
contiguous memory areas to be loaded.

$U Commands

The $U command is used to start program
execution. For example,

$U6C(CR)

starts program execution at location 006C with
P=X=0. This command will leave the terminal
interface and floppy disk interface (if installed) ac-
tive. Consequently, the user program should not use
170 commands associated with these interfaces. For a
further discussion of the terminal interface and the
floppy disk interface, see the material on Module
Description and Signal Mnemonics in the next
Section. For further details on the $U command, refer
to “Two-Level 1/0”" under Input/Output Inter-
facing in the next Section.

If only $U(CR) is typed with no address
specified, execution will start at location 0000. If
more than 4 address digits are typed, only the last 4
will be used.

$P Commands

The $P command is similar to the $U command.
For example:

$P6C(CR)

would also start program execution at location 006C
with P=X=0 except, in this case, the terminal and
floppy disk interfaces may be disabled. This feature is
a convenience for the user so that his program can use
I/0 commands normally associated with these
peripherals.

If no address is specified, program execution
starts from location 0000. The function is equivalent
to pushing the RESET then RUN P buttons on the
control panel. This command also obeys the ‘last-4-
digits’ address rule.

For further details of this command, refer to
“Two-Level 1/0” under Input/Qutput Interfacing
in the next Section.

$L Commands

The $L. command is used in systems having a
floppy disk. Typing

$L
causes UT20 to type

READ?

asking for the unit and track number of the diskette
file to be loaded. For a discussion of the disk loader
program, refer to the RCA COSMAC Floppy Disk
System I1 CDP18S805 Instruction Manual MPM-
217. If a floppy disk system is not installed and this
command is accidentally activated, simply do a CR
after the READ? interrogation. UT20 will type

DRIVE NOT ON

and issue an *, waiting for another command.

?R Commands

When UT20 is activated (via RESET, RUN Uj),
one of the first things it does is save 13-1/2 of the 16
‘R’ registers of the CPU in its RAM stack located at
address 8C00 for 32 bytes. Registers R0, R1, and
R4.1 are altered, but the states of the remaining
registers are preserved at the time when UT20 was
activated. This feature provides a means of
examining most CPU registers for debugging pur-
poses.

14

The ?R command provides for automatic readback
of the stored register states with X'’s for registers RO,
RI, and R4.1 to indicate that they have not been
preserved. For example, RESET, RUN U, CR then

?R gives this format:

XXXX XXXX 18D4 3821, XX33 B760 8A15 0017
T =,
RO R7

5518 0717 34AA 8197, A401 6789 A825 01B9

) I
RS RF

NOTE: the 7R must be the first command given to
UT20 after it is started, because UT20 uses the stack
itself when other commands are issued. Thus, it may
overwrite the preserved registers when executing any
command other than ?R.

Summary of UT20
Operating Instructions

In summary, after receiving the prompt
character ‘*’ the user may type

?M(address) A (optional count) (CR)
IM(address) A(data) (Optional , or ;) (CR)

(where the data may have non-hex digits between
each hex pair)

8P (optional address) (CR)
83U (optional address) (CR)
$L

?R (CR)

UT20 ignores initial characters until it detects ?, !, or
$. Then inputs which are not compatible with the
above formats cause an error message (?).

A further detailed summary of these basic
operating instructions is given below, repeating the
information just given in a more concise form.

1. After pressing “RUN U”, the user should press
CR (for full-duplex operation). This instruction
sets up the bit-serial timing and specifies echo or
not.

2. UT20 will return * as a prompt.

3. Following *, UT20 ignores all characters until
one of ?, §, or ! is typed in.

Operator Manual for the RCA CDS || CDP18S005

4. Following *M or !M, UT20 waits for a hex
character. It then assembles an address. If more
than four hex digits are typed, only the last four are
used. Next, a space is required. Note: A denotes a
space.’

a. For M addr A a hex count may follow (again,
only the last four digits are kept), and the
command is terminated by CR. If no count is
entered, one byte will be typed.

b. For !IM addr A data must follow. An even
number of hex digits is required. Before each hex
pair arbitrary filler, except for a CR, comma, or
semicolon, is allowed. CR terminates the
command, unless it is immediately preceded by a
comma or, as is generally the case, by a
semicolon.

i. In case of comma CR the user must insert
an LF for UT20 to continue to accept data.
This procedure is a form of line continuation.
ii. In case of a semicolon all following
characters are ignored until the CR is typed.
Then, the user must again provide an LF, and
UT20 continues as if it had received optional
filler, then a starting address, then a space,
and then data.

iii. The !M command can be followed by as
many continuation lines as needed, mixed
between the two types if desired, and is finally
terminated with a CR not preceded by a
comma or semicolon,

5. Commands $P or $U may be followed by a
starting address. The last 4 digits are used if more
than 4 are typed in. If no address is given, 0 is
assumed. Program execution begins at the specified
location with RO as the program counter ® . The $P
command disables the terminal and floppy disk
interfaces whereas $U does not.

6. Command $L starts the floppy disk loader
program which will issue the prompt

READ?

A proper response is a 4-digit number
requesting unit and track number, followed by a
CR. If an error is detected during the read
operation, a diagnostic message is printed.

7. Command ?R causes a readout of the 16 R
registers saved when UT20 is initialized. X’s are
written for those registers not preserved.

$Pand $U always begin with RO as program counter. This
arrangement is consistent with the fact that P=0 and X=0
after the CPU is RESET. Refer to the CDP1802 data sheet
for other actions of RESET.

Operating and Programming the CDS

15

8. When a !M, M or R command is accepted
and completed, UT20 types another * prompt.

9. When UT20 detects bad syntax, it types out a ?
and returns the carriage. If a mistake is made when
data is entered (by typing in an odd number of
digits), all data will have been entered except the
last hex digit. Note that the “only-last-four-digits”’
tule in the address field allows the user to correct an
address error without retyping the whole com-
mand. For example, a mistaken 234 can be
. corrected by continuing. Thus, 2340235 is, ef-
fectively, 0235. A bad command can be aborted by
typing in any illegal character except after 'M or
~?M or between input hex data pairs. In these cases,
the user should type any digit and then, for
example, a period.

Terminal Interfacing
ASCII Coding

The CDS 1is designed to interface to a data
terminal via a serial ASCII code using either a 20-mA
current loop or an EIA RS232C standard electrical
interface. When a key is struck on a TTY terminal,
the information denoting that character is converted
to its ASCII code and appears on the output ter-
minals as a serial data-bit stream. The serial data
originating at the T'TY for the letter ‘M’ is shown in
Fig. 2. The character is framed by a start bit B and

o e o e g
LOGIC | —

—
I|2]3 4|5 6|7]|8
LOGICO =t

p|p|o|o|p|o|o]|P Fle|--—|8]

@

ACTUAL
‘DATA BITS

INTELLIGENCE BITS
r+— 7 DATA BITS —
PLUS | PARITY BIT

le— - COMPLETE CHARACTER ____|

“M" (4Djg)
#=ONE BIT TIME P=PARITY BIT
B=START BIT D=DATA BIT
F=STOP BIT ~~——=ASYNCHRONOUS TIME

BETWEEN CHARACTERS

92CS-28100

Fig. 2 — Data terminal bit serial output for the
character “M",

two stop bits FF. By convention two stop bits are
used for data transmission at 10 characters per second
although 1, 1%, or 2 are also acceptable outputs from
various different terminals. A parity bit P is also
shown. For even parity, the parity bit would be a ‘1’
only if the 7 data bits contain an odd number of ‘1’s.

Hence, the total number of 1’s in the eight intelligence
bits is always an even number. Some data terminals
may be set up to generate either even or odd parity.
UT20 ignores the parity bit, so either even or odd
parity is acceptable.

Data from the CDS is generated with the same
format; i.e., a start bit, 7 data bits, a parity bit, and
two stop bits. Note that the CDS does not generate
parity - the parity bit is always a ‘1’ regardless of the
data bits. Therefore, terminals interfacing to the CDS
should ignore the parity bit.

UT20 Read and Type Routines

The UT20 read and type routines provide the
basic software mechanism for communication be-
tween the CDS and data terminal. Several different
routines are available to facilitate different types of
I/0 data transfers.

These routines are designed to allow adoption to
various terminal speeds and to determine whether or
not characters read in should be “‘echoed’ (ie., typed
back immediately). For these purposes, a ‘sub-
subroutine’ called DELAY is included which
provides the necessary bit timing delays to the read
and type routines. DELAY uses RC as its program
counter, which must be set-up to point to location
S80EF. UT20 does this automatically when it is
started. Any user program using a read or type
routine must not alter RC, or must restore it to SOEF
before calling a read or type routine. Also, the upper
half of register RE (RE.1) contains a control con-
stant. The least significant bit specifies echo (0
denotes echo, 1 denotes no echo). For full-duplex
operation, then, this bit is a zero. Again, this is
automatically set when UT20 is started and the CR or
LF characters received.

The remainder of RE.1 constitutes a timing
parameter (TP). TP is calculated as follows:

interval between two serial bits | ®

TP=2x
320 x (CPU clock period)

where the fraction is rounded to the nearest integer.
For example, because a Teletype Model 33 operates
at 10 characters per second and 11 bits per character,
for the CDS running from the supplied 2.0-MHz

clock,

® The factor of 2 comes from the fact that the input serial wave-
form is sampled over two successive bit times. The factor of 320
comes from the fact that the time between samples is 20 instruc-
tion times, with each instruction taking 16 clock periods.

16

1s 1 char
—_— e
10 char 11 bits
TP=2x | —m8™
1s
320 x
2.0 x 106
=2 x 56.8 (rounded to 57)
=11419=721¢

Because for proper operation TP must be less
thar 255, there is a bound on the speed of terminals
supported at any given clock rate. Faster terminals or
slower clocks can be supported to the extent that
roundoff errors do not cause bad timing. For
example, at 2.0 MHz and 30 10-bit characters per
second,

A1
30 10

=2(20.8) =4219=2A1¢
320/2.0 x 106

and the round-off error is small (2100 instead of 20.8).
On the other hand, at 2.0 MHz with baud rates above
1200, the round-off error would be too high.

The utility program UT20 uses a subroutine
“TIMALC” to generate the operating time constant,
using the first character typed in by a user. This
routine times the intervals between incoming bits to
calculate TP and reads one bit to determine whether
or not to echo. Specifically, if a CR is entered while
TIMALC is running, then echoes will be provided;
an LF suppresses echoes. In either case, RE.I is
loaded with the appropriate constant. TIMALC also
loads the subroutine pointer for the DELAY routine.
The user of TYPE and READ has the option of
calling TIMALC or setting up RE.1 and the pointer
to the DELAY routine himself. As a convenience to
the user, UT20 leaves RE.1 and RC properly ad-
justed while performing a $P or $U operation and
may be used unless they have been altered by the
user.

All read and type routines and TIMALC use R3
as their program counter, and return to the caller
with SEP R5. They can be called directly from a
program that can use RS as its program counter, or
they may be called through the Standard Call and
Return Technique (SCRT) described in the User

Manual for the CDP1802 COSMAC
Microprocessor, MPM-201 in the Section
Programming Techniques under ‘“Subroutine

Techniques”. This programming technique is the
most general and is recommended.

Operator Manual for the RCA CDS 1l CDP18S005

RE.l is reserved for the operating constant
{control constant 0 or 1 added to the timing parameter
TP) discussed above.

One byte of RAM is needed by read and type
routines. These routines assume that R2 points to free
RAM and M(R(2)) is altered by them. In general, the
user can set R2 to any free RAM location. UT20 uses
abyte in its dedicated RAM for this purpose.

RF.1 is used in certain cases to pass the byte
being read or typed between the calling routine and
these subroutines. When READ is exited, it leaves
the input byte in RF.1. When TYPE is entered at
location 81A4, the byte to be typed is taken from
RF.1.

All routines alter RE.0 and RF.0. They also alter
D, DF, and X. The READ routine leaves the input
byte in D as well as in RF.1, but the byte in D will be
destroyed if the Standard Call and Return Technique
is used.

When TIMALC exits, R3.1 is left holding A.1
(READ) = A.1 (TYPE) = 81, but R3.0 is
meaningless. When READ exits, R3 is ready for
entry at READAH (see Table I[1). When TYPE exits,
R3 is ready for entry at TYPES (see same table).
When DELAY exits, RC is ready for another call to
DELAY. When the Standard Call and Return
Technique is used, R3 is automatically set up.

The READ routine has two entry points - READ
and READAH. The former acts as described above
and has no other side-effects. The latter operates just
as READ does, but with the following side-effect. If
the character read in is a hex character (0-9, A-F)
then the 16-bit contents of RD are shifted four bits to
the left, and the 4-bit hex equivalent of the input
character is entered at the right. DF is then setto 1 on
exiting. If the input character is not a hex character,
RD is not affected, but DF is set to 0 on exiting.

CAUTION: A READ may immediately be followed
by another READ, but not immediately by a TYPE.
The caller should wait 1.5 bit times first, which he
can do by entering TYPE at TYPESD or by calling
DELAY, with a parameter of 7 or greater.

The DELAY subroutine assumes that the calling
program counter is R3. It uses the value, n, of the
immediate byte at M(R3) to generate a delay equal to

(20 + m (2n + 6)) instruction times
where m is time constant in RE.1 (see previous

discussion). It then increments R3 past the calling
parameter and returns via a SEP R3.

Operating and Programming the CDS

17

. The TYPE routine has five different entry
points. Three of them simply specify different places
to fetch the character from: TYPE types from RF.1,
TYPES types from M(R5) and increments R5, and
TYPEO types from M(R6) and increments R6.
TYPESD is an entry which provides a 1.5-bit delay
before going to TYPES. The purpose of this delay is
to let an immediately preceding echoed READ
process to completion before typing. TYPEZ2 is an
entry which results in RF.1 being typed out in hex

| form as two hex digits. Each 4-bit half is converted to
a ASCII hex digit (0-9, A-F) and separately typed
out.

Notice that the READ routines are designed to
facilitate repeated calls on READAH, while the
TYPE routines are designed for repeated calls to
TYPES. In order to output a string of variable data
characters following a READ, given the timing
restriction mentioned earlier, it is most logical to call
TYPESD first, using an immediate ‘“punctuation”

byte (i.e., non-data such as space, null, etc.) to get the
required initial delay and to follow either with
repeated calls on TYPE (with the output variable
data characters picked up from RF.1) or repeated
calls on TYPES using immediate data characters.
This procedure permits a maximum output character
rate.

Another routine, OSTRNG, can be used to
output a string of characters. OSTRNG picks up the
character string pointed to by R6 and tests each
character for zero. The characters should be already
encoded in ASCII. If a zero is found (ASCII ‘null’),
the program terminates and returns control to the
user via a SEP R5. If the character is not a zero, it is
typed out to the terminal. The OSTRNG routine
includes a delay on the front end so that it may be
called at any time - even following a read.

Tables I and II summarize the functions and
calling sequences just described.

TABLE | — UT20 REGISTER UTILIZATION

RE.O is used by all READ and TYPE routines and by TIMALC, OSTRNG, and CKHEX.

RF.0 is used by all READ and TYPE routines and by TIMALC, OSTRNG, and CKHEX.

(1) All routines, except DELAY, use R3 as program
counter, exit with SEP5, and alter registers X, D,
DF, RE, RF and location M(R2).

(2) DELAY routine uses RC as program counter,

Same as READ. If hex character, DIGIT — RD (see text)

Output ASCII string at M{R6). Data byte 00 ends typeout.

Register Register
| Name Number Function and Comments
Z[ER 2? } Altered by UT20 while storing registers. R4.1 is similarly altered.
1 ST R2 Pointer to RAM “‘work’’ byte. UT20 uses R2 = 8C00.
suB R3 Program counter for all routines except DELAY.
PC R5 Program counter for UT20 which calls the routines above.
DELAY RC Program counter for the DELAY routine. Points to DELAY1 in memory.
ASL RD Assembled into by READAH (input hex digits).
AUX RE RE.1 holds time constant and echo bit.
CHAR RF RF.1 holds input/output ASCII character.
TABLE il — UT20 READ AND TYPE CALLING SEQUENCE
Entry Absolute
Name Address
READ 813E Input ASCIHl — RF.1, D (if non-standard linkage)
3 READAH 813B
TYPESD 819C 1.5-bit delay. Then TYPES function.
TYPES 81A0 Output ASCII character at M(R5). Then increment R5.
TYPEG 81A2 Output ASCII character at M(R6). Then increment R6.
TYPE 81A4 Output ASCII character at RF.1.
TYPE2 81AE Output hex digit pair in RF.1.
TIMALC 80FE Read input character and set up control byte in RE.1.
Initialize RC to point to DELAY1.
DELAY1 80EF Delay, as function of M(R3) (see text). Then R3 + 1.
OSTRNG 83F0
Notes

exits with SEP3 after incrementing R3, and
alters registers X, D, DF, and RE.)
{3) READ and READAH exit with R3 pointing
back at READAH. .
(4) All five TYPE routines exit with R3 pointing
at TYPES.

18

Examples of UT20
Read and Type Usage

The following examples should help clarify how
to use the UT20 read and type subroutines. Most
examples use the standard subroutine linkage which
requires that R2 point at a free RAM location.

‘ Read Routines

This sample program will read four ASCII hex
chiaracters into register RD translating them from
YSCIT to hex in the process. Reading will terminate
“when a carriage return is entered. Entry of a non-hex
digit other than a carriage return will cause a branch
to an error program which will type out a “?”’. This
sample program uses the standard subroutine call and
return linkage.

READAH=#813B
LOOP: SEP R4,A(READAH) ..Call the hex

..read program
..As long as ASCII hex
..digits are entered
..Read and shift in
..Fall through if not hex
..character

BDF LOOP

GHI RF
..entered

XRI#0D ..Was it carriage return

BNZ ERROR ..If not, BR to error

..Characters entered are now

..in RD

The READ routine (at 813E) could be used
similarly to enter characters; however, READ only
enters them one at a time into RF.1 (and D) writing
over the previous entry. Note that, even though
incoming data is entered into D, the subroutine
return program alters D. Therefore, valid data will
only be found in RF.1 (and RD when READAH is
used) if the standard subroutine call and return
programs are used. An alternative technique is to use
R5 as the main program counter (since all read and
type routines terminate with a SEP R5) and call the
program with a SEP R3 (since all read and type
routines use R3 as their program counter). The
following example illustrates this technique.

Type Routines

EXAMPLE 1: This program outputs a single
character using the TYPES routine. It uses R5 as the
program counter.

..See what character was last

Operator Manual for the RCA CDS || CDP18S005

LDI#81 ..Set R3to TYPES routine
PHIR3

LDI #A0

PLOR3

LDI #FF ..Set R2 to free RAM location #3FFF
PLOR2

LDI #3F

PHIR2

SEPR3 ..Calltype

SR’ ..An “R” will be typed

yy ..Next instruction

The TYPESD routine is used in the same way,

EXAMPLE 2: This program outputs a character
using the TYPEG6 routine. Note that R6 should be the
program counter for the program calling TYPEG if
the character to be typed is an immediate byte
because TYPE6 must always be from M(R6). But,
because TYPE6 exits with SEP 5, TYPE6 must
always be called using standard subroutine linkage
for typing an immediate byte. An alternative is to use
RS as the main program counter but point R6 at the
memory location containing the byte to be typed.
This example uses standard subroutine linkage.

SEP R4 ..Branch to the call routine
H#B81A2 . Address of TYPEG

Y ..Byte to be typed out

vy ..Next instruction

EXAMPLE 3: The TYPE and TYPE2 routines
pick up the byte in RF.1 for typing. TYPE simply
outputs the character, whereas TYPE2 considers
RF.1 a hex digit pair which it encodes in ASCII
before typing. This example types out the hex digits
'D5’, and uses standard subroutine linkage.

LDI#D5 ..Load hex digits D5
PHIRF ..IntoRF.1

SEP 4 ..Call TYPE2
H#81AE

yy ..Next instruction

Note that all type routines, except TYPE2,
expect the character they pick up to be already en-

coded in ASCII.

EXAMPLE 4: An entire message can be typed
by using the OSTRNG routine. The ASCII bytes
pointed to by R6 will be typed. When a ‘00’ byte is
detected, OSTRNG returns to the caller. This
example will output the string

RCA COSMAC
MICROPROCESSOR

The standard call and return linkage is assumed.

T e e

Operating and Programming the CDS

19

OSTRNG = #83F0

SEP R4,A(OSTRNG) ..Call OSTRNG
DCT'RCA COSMAC’ ..Ist Line
' LHODOA ..{CR} (LF)

LT MICROPROCESSOR’. .2nd Line

H00 ..End of Text

- Additional
Utility Routines

ASCII to Hex
Conversion Routine

The ASCII to hex conversion, CKHEX,
3 examines the ASCII character in RF.1. If this
character is not a hex digit, CKHEX returns to the
user {via SEP R5) with DF = 0. If the character is
hex. CKHEX returns with RE.0 = hex digit, DF =
[and with the digit shifted into the least significant 4
bits of register RD. CKHEX uses the registers
described above and. as with the other routines, is
most readily handled via the standard call and return

techniques. CKHEX is located at 83FC.

Initialization Routines

Two routines are provided, INIT1 and INIT2,
which initialize CPU registers for the standard call
and return technique. These routines set up registers
as follows:

R2 = R(X) - pointing to the last (highest)

) available user RAM location
{below 8000).
R3 - will become the program counter
i on return
R4 - pointing to the call routine in
UT20
RS - pointing to the return routine in
UT20

The INIT programs examine user memory area
(below address 8000) and determine how much
memory is present. They set R2 to the highest
available RAM address, which is 03FF for the CDS
as supplied (with one 4-kilobyte RAM card).

The only difference between INITI and INIT2
is the location to which they return. INIT1 returns to
location 0005 with P = 3, while INIT2 simply
returns by setting P = 3 and assumes that the user
has already set R3 pointing to the correct return
point. These programs are intended as a convenience
to free the user from generating the overhead code
required by the standard subroutine technique. They
may also be used as an integral part of custom
support programs running on the CDS. Their ab-
solute addresses are INIT1 = 83F3 and INIT2 =
83F0. Refer to Appendix G, the UT20 listing. for the
absolute addresses of CALL and RET, which will be
loaded into R4 and R5 respectively.

Following are examples of the use of these
programs:

EXAMPLE 1: Using INIT1
INIT1 = #83F3

Address Code Mnemonies Comment

0000 71 DIS,#00 ..Disable interrupts

0001 00

0002 CO LBRINITI ..Initialize registers

0003 83

0004 F3

0005 -- USRPGM:--..User program starts here;

.P=3

EXAMPLE 2: Using INIT2
INIT2 = #83F6

Address Code Mnemonics Comment

0000 71
0001 00
0002 F8 LDIA.I

DIS.#00 ..Disable interrupts

..Set R3 to return

(START)
0003 00 ..point
0004 B3 PHIR3
0005 F8 LDIA.0
(START)
0006 30
0007 A3 PLORS3
0008 CO LBRINIT2 ..Call INIT2

0009 83
000A Fo

0050 - START:--

..User program starts here

.P=3

20

Routine to Restart UT20

A means is provided to automatically transfer
control back to UT20 from a user program. An entry
point routine, GOUT20. is provided for this purpose.
When entered via this routine, UT20 will restart and
issue a * prompt to the terminal. A long branch to
GOUT20 at location #83F9 will cause this transfer.
U'T20 depends on the following conditions upon re-
entry
1) RE.1 = terminal timing constant
2) Two-level 170 is enabled

In order to assure the second condition, the user
program must be initiated via the $U command. The

GOUT20 routine can be called only by a program
having R3 as its program counter.

Additional Notes on UT20

U'T20 automatically enables group 1 170 devices,

Operator Manual for the RCA CDS 1l CcDP18S005

which includes the terminal and floppy disk in-
terfaces. when it is started. User-added 170 devices
wired to the same group-select signal are also
enabled. For more information on this subject, refer
to “Two-Level 170" under Input/Output Inter-
facing in the next Section, titled Hardware
Structure of the CDS. :

Interrupts are automatically disabled when uT20
is running. They are re-enabled by either the $P or
$U command. Because R1 and R2 must be initialized
by a user program before interrupts are allowed.
U'T20 prohibits start-up via these commands if an
Interrupt is pending. Instead, it will type IN-
TERRUPT and issue an *. This feature is a con-
venience to the user to prevent start-up problems if
interrupts have not been externally disabled. If
custom hardware is installed that may cause in-
terrupts at start-up, the user program should be
started via the RUN P switch.

Programming Methods

Machine Language
Programming

With an understanding of the structure and
operation of the CPU and the material provided thus
far. the reader is prepared to begin using the
Development System in an elementary way. For
example, he can now understand and possibly modify
the time-out test program presented earlier in this
Manual. However, almost any hexadecimal imachine
language) test program will require use of the 170
typewriter. The most basic way to communicate hy
the teletypewriter, therefore, will be covered next.

To read a character from the I/0 teletypewriter.
the user program should transfer control to READ®
{in UT20). That is. load R3 with 813E and execute a
D3 instruction, making sure that R2 is pointing to a
free RAM location. After the typed character is read,
the utility routine will return by setting P to 5, i.e., by
executing the instruction D5 (making it most con-
venient if the program counter of the calling routine
were 5 to begin with). The ASCII code for the input
character (with a 0 parity bit) will be in both RF.1
and in D. The memory location pointed to by R2 and
registers RE, RF, X, and DF will have been changed

in value (not preserved over the call).

® 4 list of key UT20 symbolic locations and their corresponding
absolute memory addresses is given in Table 1.

Because the READ routine uses R3 as its program
counter, it is most convenient to branch to READ by
a D3 instruction. When READ returns to the caller,
R3.0 will contain a modified value, necessitating
another initialization if a repeated 1/0 is to be per-
formed. Because the READ routine uses the values in
registers RC and RE which UT20 will normally
initialize, it is essential that the user refrain from
using these registers unless their values are saved and
later restored by his program.

To cause a character to be typed out by the I/0
typewriter, the user program should transfer control
to TYPESD at location 819C, by means of a D3
instruction, again making sure that R2 is pointing to
a free RAM location. As discussed above, the calling
P value should be 5 and, for this case, the ASCII code
for the output character should be an immediate byte
(i.e., the byte after the D3 instruction). After typing
the character, READ will have advance RS past the
argument byte and again return by a D5 execution.
M(R(2)), as well as registers RE, RF, X, D, DF, and
R3.0 return altered. All other register values are
preserved. For the reasons previously cited, the user
should again refrain from using registers RC and RE.

Given the ability to execute simple I/0 terminal
functions, the user can now code elementary test
programs to further exercise the COSMAC
Development System. As a simple example, consider
the routine shown in Fig. 3 that reads two bytes,
compares them, and outputs the “larger” of the two.

T

81

Appendix B -
Instructions for Converting a Model 33 Teletype Terminal
from Half-to-Full-Duplex Operation and from
60-mA to 20-mA Operation

For a Teletype terminal connected for half-duplex
operation, the following modifications can be made to
convert it to full-duplex operation.

1. Locate the black terminal strip in the back. See
Fig. B1.

2. Move the brown/yellow and white/blue wires from
pins 3 or 4 to pin 5.

For Teletype terminals, connected for 60-mA
operation, the following modifications can be made
for 20-mA operation.

1. Move the violet wire from pin 8 to pin 9.

2. Move the blue wire connected to the current source
resistor (a flat green resistor with four tabs located to
the right of the keyboard) from the 750-ohm tab to the
1450-ohm tab. .

Fig. B2 gives the detailed interface circuitry
between the CDS logic signals and the pin con-
nections for the Teletype terminal in the full-duplex
mode. Note particularly the isolation of the two
Teletype (TTY) current loops. Also shown in Fig. B-2
is the detailed interface circuitry between the CDS
logic signals and the pin connections for an EIA
RS232C type data terminal.

SWTcH
[ﬁ] SEND peceve
TAPE
KEYBOARD ROR
12 |3l4a5 [6l78 9
CURRENT E i e b e e a STRIPVAL
. - e|o|@ J@|o|e|@
LIMITING A 233[PRINTER —[i;ﬁng[| 2R
RESISTOR ||0 83 N
VIOLET
—1 TERMINAL STRIP BLU | veL
92CS-28104 92CS-28105
Fig. B1 — Location of and connections to terminal strip for Model 33 Teletype
data terminal showing connections for 20-mA full-duplex operation.
R4 &
+R2 Ve pAg > > L
T e
CD4066 04049 casad . KEYBOARD
2 7 + > >
EF4-Ne— U2 us_ c3 rs UIm%
l TO3IBpF <4700
[E] L
+5V 5V
10 kQ
cA324 +5v
2 R8
SELO-P EAIOAK;\Q,— L us " o1 % a2
g | 5 ' =
L + FROM EIA
TERMINAL
+i2v L L—_———)
= J2-,10
Q 10
N P (5T i
9 us r 24
{ e TO TT
N=7-P —b|) Y
OUTPUT -5V b PRINTER
W -5 VO——AAM—3 >
MRD-N —»| | AN 2V 90 Ji-3
a 12 CA324 DATA
DBO-P —bf 2 e L = TO EIA
Ed
13 e TERMINAL
RO DATA SET READY
“&V +12 VO (CLEAR TO SEND

DATA CARRIER DETECT
92CM-29393RI

DAY
560 Q) J2-6,7,8

Fig. B2 — Detail of CPU-Terminal Interface (See Appendix D).

