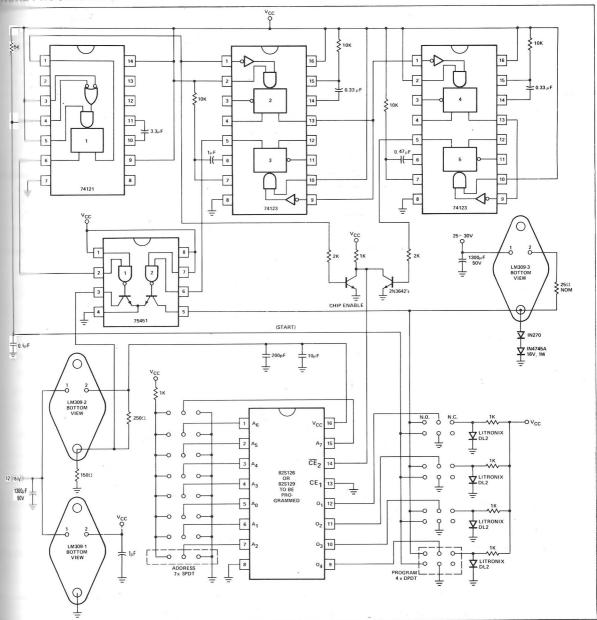
N82S126/129-B,F. • S82S126

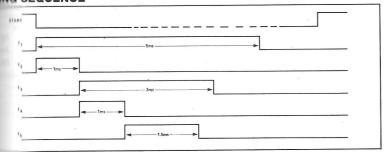
PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) TA = +25°C

PARAMETER		TEST CONDITIONS	LIMITS			
			MIN	TYP	MAX	UNII
Power Supply	Voltage					
VCCP1	To Program	ICCP = 350 ± 50mA	8.5	8.75	9.0	V
		(Transient or steady state)				- 13
VCCH	Upper Verify Limit		5.3	5.5	5.7	٧
VCCL	Lower Verify Limit		4.3	4.5	4.7	٧
VS ³	Verify Threshold	4	0.9	1.0	1.1	٧
ICCP	Programming Supply Current	$V_{CCP} = +8.75 \pm .25V$	300	350	400	mA
Input Voltage						-
VIH	Logical "1"		2.4		5.5	V
V _{IL}	Logical "O"		0	0.4	0.8	V
Input Current						
lн	Logical "1"	V _{IH} = +5.5V			50	μА
կլ	Logical "O"	V _{IL} = +0.4V			-500	μΛ
V _{OUT} ²	Output Programming Voltage	I _{OUT} = 200 ± 20mA (Transient or steady state)	16.0	17.0	18.0	٧
lout	Output Programming Current	$V_{OUT} = +17 \pm 1V$	180	200	220	mA
TR	Output Pulse Rise Time	1	10		50	μ6
tp	CE Programming Pulse Width	7	1		2	mi
tD	Pulse Sequence Delay		10			μ8
TPR	Programming Time	VCC = VCCP			2.5	800
TPS	Programming Pause	VCC = OV	5			800
TPR + TPS	Programming Duty Cycle				33	%

PROGRAMMING PROCEDURE


- Terminate all device outputs with a 10KΩ resistor to V_{CC}.
- 2. Select the Address to be programmed, and raise VCC to $V_{CCP} = 8.75 \pm .25V.$
- 3. After 10 μ s delay, apply VOUT = $+17 \pm 1V$ to the output to be programmed. Program one output at the time.
- 4. After 10μs delay, pulse both CE inputs to logic "O" for 1 to 2 ms.
- After 10μs delay, remove +17V from the programmed output.
- To verify programming, after 10μs delay, lower V_{CC} to V_{CCI} +5.5 ± .2V, and apply a logic "0" level to both CE inputs programmed output should remain in the "1" state. Again, limit V_{CC} to V_{CCL} = +4.5 \pm .2V, and verify that the programm output remains in the "1" state.
- 7. Raise VCC to VCCP = 8.75 ± .25V, and repeat steps 3 three 6 to program other bits at the same address.
- After 10μs delay, repeat steps 2 through 7 to program all θ address locations.

NOTES:


- 1. Bypass V_{CC} to GND with a 0.01 pF capacitor to reduce voltage spikes.
 2. Care should be taken to insure the 17 ± 1V output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specific age limit.
- 3. Vg is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful line. tempt.
- Continuous fusing for an unlimited time is also allowed, provided that a 33% duty cycle is maintained. This may be accomplished by following each Program Verify cycle with a field (VCC = 0V) of 4ms

N82S126/129-B,F. • S82S126/129F

PROGRAMMER

MING SEQUENCE

